Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Artificial Intelligence federates numerous scientific fields in the aim of developing machines able to assist human operators performing complex treatments -most of which demand high cognitive skills (e.g. learning or decision processes). Central to this quest is to give machines the ability to estimate the likeness or similarity between things in the way human beings estimate the similarity between stimuli.In this context, this book focuses on semantic measures: approaches designed for comparing semantic entities such as units of language, e.g. words, sentences, or concepts and instances defined into knowledge bases. The aim of these measures is to assess the similarity or relatedness of such semantic entities by taking into account their semantics, i.e. their meaning -intuitively, the words tea and coffee, which both refer to stimulating beverage, will be estimated to be more semantically similar than the words toffee (confection) and coffee, despite that the last pair has a higher syntactic similarity. The two state-of-theart approaches for estimating and quantifying semantic similarities/relatedness of semantic entities are presented in detail: the first one relies on corpora analysis and is based on Natural Language Processing techniques and semantic models while the second is based on more or less formal, computer-readable and workable forms of knowledge such as semantic networks, thesaurus or ontologies.Semantic measures are widely used today to compare units of language, concepts, instances, or even resources indexed by them (e.g., documents, genes). They are central elements of a large variety of Natural Language Processing applications and knowledge-based treatments, and have therefore naturally been subject to intensive and interdisciplinary research efforts during last decades. Beyond a simple inventory and categorization of existing measures, the aim of this monograph is to convey novices as well as researchers of these domains towards a better understanding of semantic similarity estimation and more generally semantic measures. To this end, we propose an in-depth characterisation of existing proposals by discussing their features, the assumptions on which they are based and empirical results regarding their performance in particular applications. By answering these questions and by providing a detailed discussion on the foundations of semantic measures, our aim is to give the reader key knowledge required to: (i) select the more relevant methods according to a particular usage context, (ii) understand the challenges offered to this field of study, (iii) distinguish room of improvements for state-of-the-art approaches and (iv) stimulate creativity towards the development of new approaches. In this aim, several definitions, theoretical and practical details, as well as concrete applications are presented.keywords: Semantic similarity, semantic relatedness, semantic measures, distributional measures, domain ontology, knowledge-based semantic measure.iii iv
Artificial Intelligence federates numerous scientific fields in the aim of developing machines able to assist human operators performing complex treatments -most of which demand high cognitive skills (e.g. learning or decision processes). Central to this quest is to give machines the ability to estimate the likeness or similarity between things in the way human beings estimate the similarity between stimuli.In this context, this book focuses on semantic measures: approaches designed for comparing semantic entities such as units of language, e.g. words, sentences, or concepts and instances defined into knowledge bases. The aim of these measures is to assess the similarity or relatedness of such semantic entities by taking into account their semantics, i.e. their meaning -intuitively, the words tea and coffee, which both refer to stimulating beverage, will be estimated to be more semantically similar than the words toffee (confection) and coffee, despite that the last pair has a higher syntactic similarity. The two state-of-theart approaches for estimating and quantifying semantic similarities/relatedness of semantic entities are presented in detail: the first one relies on corpora analysis and is based on Natural Language Processing techniques and semantic models while the second is based on more or less formal, computer-readable and workable forms of knowledge such as semantic networks, thesaurus or ontologies.Semantic measures are widely used today to compare units of language, concepts, instances, or even resources indexed by them (e.g., documents, genes). They are central elements of a large variety of Natural Language Processing applications and knowledge-based treatments, and have therefore naturally been subject to intensive and interdisciplinary research efforts during last decades. Beyond a simple inventory and categorization of existing measures, the aim of this monograph is to convey novices as well as researchers of these domains towards a better understanding of semantic similarity estimation and more generally semantic measures. To this end, we propose an in-depth characterisation of existing proposals by discussing their features, the assumptions on which they are based and empirical results regarding their performance in particular applications. By answering these questions and by providing a detailed discussion on the foundations of semantic measures, our aim is to give the reader key knowledge required to: (i) select the more relevant methods according to a particular usage context, (ii) understand the challenges offered to this field of study, (iii) distinguish room of improvements for state-of-the-art approaches and (iv) stimulate creativity towards the development of new approaches. In this aim, several definitions, theoretical and practical details, as well as concrete applications are presented.keywords: Semantic similarity, semantic relatedness, semantic measures, distributional measures, domain ontology, knowledge-based semantic measure.iii iv
During the recent era of big data, a huge volume of unstructured data are being produced in various forms of audio, video, images, text, and animation. Effective use of these unstructured big data is a laborious and tedious task. Information extraction (IE) systems help to extract useful information from this large variety of unstructured data. Several techniques and methods have been presented for IE from unstructured data. However, numerous studies conducted on IE from a variety of unstructured data are limited to single data types such as text, image, audio, or video. This article reviews the existing IE techniques along with its subtasks, limitations, and challenges for the variety of unstructured data highlighting the impact of unstructured big data on IE techniques. To the best of our knowledge, there is no comprehensive study conducted to investigate the limitations of existing IE techniques for the variety of unstructured big data. The objective of the structured review presented in this article is twofold. First, it presents the overview of IE techniques from a variety of unstructured data such as text, image, audio, and video at one platform. Second, it investigates the limitations of these existing IE techniques due to the heterogeneity, dimensionality, and volume of unstructured big data. The review finds that advanced techniques for IE, particularly for multifaceted unstructured big data sets, are the utmost requirement of the organizations to manage big data and derive strategic information. Further, potential solutions are also presented to improve the unstructured big data IE systems for future research. These solutions will help to increase the efficiency and effectiveness of the data analytics process in terms of context-aware analytics systems, data-driven decision-making, and knowledge management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.