Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Q-balls are non-topological solitons in field theories whose stability is typically guaranteed by the existence of a global conserved charge. A classic realization is the Friedberg-Lee-Sirlin (FLS) Q-ball in a two-scalar system where a real scalar χ triggers symmetry breaking and confines a complex scalar Φ with a global U(1) symmetry. A quartic interaction κχ 2|Φ|2 with κ > 0 is usually considered to produce a nontrivial Q-ball configuration, and this repulsive force contributes to its stability. On the other hand, the attractive cubic interaction Λχ|Φ|2 is generally allowed in a renormalizable theory and could induce an instability. In this paper, we study the behavior of the Q-ball under the influence of this attractive force which has been overlooked. We find approximate Q-ball solutions in the limit of weak and moderate force couplings using the thin-wall and thick-wall approximations respectively. Our analytical results are consistent with numerical simulations and predict the parameter dependencies of the maximum charge. A crucial difference with the ordinary FLS Q-ball is the existence of the maximum charge beyond which the Q-ball solution is classically unstable. Such a limitation of the charge fundamentally affects Q-ball formation in the early Universe and could plausibly lead to the formation of primordial black holes.
Q-balls are non-topological solitons in field theories whose stability is typically guaranteed by the existence of a global conserved charge. A classic realization is the Friedberg-Lee-Sirlin (FLS) Q-ball in a two-scalar system where a real scalar χ triggers symmetry breaking and confines a complex scalar Φ with a global U(1) symmetry. A quartic interaction κχ 2|Φ|2 with κ > 0 is usually considered to produce a nontrivial Q-ball configuration, and this repulsive force contributes to its stability. On the other hand, the attractive cubic interaction Λχ|Φ|2 is generally allowed in a renormalizable theory and could induce an instability. In this paper, we study the behavior of the Q-ball under the influence of this attractive force which has been overlooked. We find approximate Q-ball solutions in the limit of weak and moderate force couplings using the thin-wall and thick-wall approximations respectively. Our analytical results are consistent with numerical simulations and predict the parameter dependencies of the maximum charge. A crucial difference with the ordinary FLS Q-ball is the existence of the maximum charge beyond which the Q-ball solution is classically unstable. Such a limitation of the charge fundamentally affects Q-ball formation in the early Universe and could plausibly lead to the formation of primordial black holes.
We construct spherically symmetric dyonic black holes in a generalized Maxwell-Friedberg-Lee-Sirlin type model with a complex scalar doublet and a symmetry breaking potential for the real scalar field, minimally coupled to Einstein gravity in asymptotically flat space. We analyze the properties of the hairy black holes and determine their domain of existence. Our discussion focuses mostly on the case of a long-ranged massless real scalar field. Our results indicate that in this case, depending on the coupling constants, the resonant hairy dyonic black holes may bifurcate from Reissner-Nordström black holes at maximal chemical potential, while the limiting solutions at minimal chemical potential may be related to the Penney solution. Published by the American Physical Society 2024
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.