Magnetic nanowires are attractive materials because of their morphology-dependent remarkable properties suitable for various advanced technologies in sensing, data storage, spintronics, biomedicine and microwave devices, etc. The recent advances in synthetic strategies and approaches for the fabrication of complex structures, such as parallel arrays and 3D networks of one-dimensional nanostructures, including nanowires, nanotubes, and multilayers, are presented. The simple template-assisted electrodeposition method enables the fabrication of different nanowire-based architectures with excellent control over geometrical features, morphology and chemical composition, leading to tunable magnetic, magneto-transport and thermoelectric properties. This review article summarizing the work carried out at UCLouvain focuses on the magnetic and spin-dependent transport properties linked to the material and geometrical characteristics.