Plasma uniformity has been recognized as a significant parameter in large-sized high density plasma processing tools, but neutral uniformity issues have received less attention. In this article we show experimental and modeling results which indicate that significant neutral uniformity variations can occur in high density plasma processing tools. The experiments are carried out in both inductively coupled plasma and helicon plasma sources. A movable static pressure gauge is used to obtain the static radial neutral pressure distribution both with and without a discharge present. Without a wafer present in the reactor, significant (∼20%–40%) reductions in neutral pressure are observed in these sources during steady-state plasma operations. This spatially averaged neutral depletion is accompanied by hollow neutral pressure profiles. The degree of on-axis neutral depletion depends upon both plasma density and neutral fill pressure. We show that the “plasma pumping” effect, wherein electron impact ionization of neutral particles is followed by their rapid removal from the plasma by the pre-sheath electric field, can reproduce the experimental results. This effect has the potential to result in large (∼50%) neutral density variation across 300 mm wafers in high density plasma sources.