Increased forest fire activity across the western continental United States (US) in recent decades has likely been enabled by a number of factors, including the legacy of fire suppression and human settlement, natural climate variability, and human-caused climate change. We use modeled climate projections to estimate the contribution of anthropogenic climate change to observed increases in eight fuel aridity metrics and forest fire area across the western United States. Anthropogenic increases in temperature and vapor pressure deficit significantly enhanced fuel aridity across western US forests over the past several decades and, during 2000-2015, contributed to 75% more forested area experiencing high (>1 σ) fire-season fuel aridity and an average of nine additional days per year of high fire potential. Anthropogenic climate change accounted for ∼55% of observed increases in fuel aridity from 1979 to 2015 across western US forests, highlighting both anthropogenic climate change and natural climate variability as important contributors to increased wildfire potential in recent decades. We estimate that human-caused climate change contributed to an additional 4.2 million ha of forest fire area during 1984-2015, nearly doubling the forest fire area expected in its absence. Natural climate variability will continue to alternate between modulating and compounding anthropogenic increases in fuel aridity, but anthropogenic climate change has emerged as a driver of increased forest fire activity and should continue to do so while fuels are not limiting.wildfire | climate change | attribution | forests W idespread increases in fire activity, including area burned (1, 2), number of large fires (3), and fire-season length (4, 5), have been documented across the western United States (US) and in other temperate and high-latitude ecosystems over the past half century (6, 7). Increased fire activity across western US forests has coincided with climatic conditions more conducive to wildfire (2-4, 8). The strong interannual correlation between forest fire activity and fire-season fuel aridity, as well as observed increases in vapor pressure deficit (VPD) (9), fire danger indices (10), and climatic water deficit (CWD) (11) over the past several decades, present a compelling argument that climate change has contributed to the recent increases in fire activity. Previous studies have implicated anthropogenic climate change (ACC) as a contributor to observed and projected increases in fire activity globally and in the western United States (12-19), yet no studies have quantified the degree to which ACC has contributed to observed increases in fire activity in western US forests.Changes in fire activity due to climate, and ACC therein, are modulated by the co-occurrence of changes in land management and human activity that influence fuels, ignition, and suppression. The legacy of twentieth century fire suppression across western continental US forests contributed to increased fuel loads and fire potential in many locations (20,21), ...