The global spread of multi-resistant pathogenic microorganisms has significantly complicated the treatment of chronic wounds. The development of novel drugs requires a substantial time investment. Hybrid materials such as nanoparticles stabilized by plant extracts are considered the best for creating efficient antiseptic substances. This paper is the first to discuss quantitative and qualitative analyses of the phytochemical constituents of the medicinal plant Artemisia terrae-albae, collected in Kazakhstan. The antimicrobial activity of the extracts, as well as of silver nanoparticles (AgNPs) stabilized by Artemisia terrae-albae extract, were evaluated. AgNPs were characterized by an average size of 82 nm or larger with a negative surface charge. TEM analysis of the obtained suspension showed a nonuniform structure of particles synthesized at a low concentration of ethyl acetate solvent in water. The SPR peak of AgNPs@Art aq. extract was detected at 420 nm, while any clear SPR peak was observed for AgNPs@Art ethylacetate extract. Diluted Artemisia terrae-albae extracts did not exhibit pronounced antimicrobial activity due to the poor solubility of compounds in water. Nevertheless, the AgNPs@Art aq. and AgNPs@Art EtAc. extracts possessed antimicrobial activity against the Pseudomonas aeruginosa ATCC 9027, Staphylococcus aureus ATCC 6538, Escherichia coli (ATCC 8739), and Candida albicans ATCC 10231 strains.