Laryngeal Cancer Diagnosis via miRNA-based Decision Tree Model
Aarav Arora,
Igor Tsigelny,
Valentina Kouznetsova
Abstract:Purpose Laryngeal cancer (LC) is the most common head and neck cancer, which often goes undiagnosed due to the expensiveness and inaccessible nature of current diagnosis methods. Many recent studies have shown that microRNAs (miRNAs) are crucial biomarkers for a variety of cancers. Methods In this study, we create a decision tree model for the diagnosis of laryngeal cancer using a calculated miRNAs’ attributes, such as sequence-based characteristics, predicted miRNA target genes, and gene pathways. This series… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.