The success of forest and agricultural plant establishment program mainly depends on the quality of reproductive material. The study intends to offer engineers and farm owners a solution for small-size seed improvement before sowing. The effect of low-intensity coherent light on the seeds of various crops is theoretically and empirically hypothesized. The seedlots of Scots pine (Pinus sylvestris L.) and sugar beet (Beta vulgaris L.) of Russian diploid hybrid RMS-127 were germinated in a controlled environment. The germinants were produced from six seed fractions, previously irradiated with 1.274 W·m<sup>–2</sup> at the 632.8 nm wavelength with 1, 2, 3, 5, 10, 15 min exposure to a standard laser system, plus untreated control. Pine germinants were measured on day 15, beetroot on day 10 after germination. An increase in exposure time reduced Scots pine germination energy and capacity, while for sugar beet the results were not conclusive. On the contrary, increasing the exposure time had a positive effect on both the height and biomass growth of both Scots pine and sugar beet germinants. The 10-min exposure time resulted in maximum values for sugar beet height and biomass and Scots pine height, while the 15-min exposure time produced maximum Scots pine biomass.