In this paper, a total of 57 micro and nano scale hybrid manufacturing processes are reviewed. These processes are categorized in terms of process timing and process type. Process timing is one of the most important aspects of manufacturing, and three different process schemes -concurrent, main/assistive (M/S) separate, and main/main (M/M) separate -are considered. The process type is categorized as either geometrically additive or subtractive, and all hybrid processes are categorized into combinations of additive, subtractive, and assistive process. Features and advantages are described for each of these classifications. Machining is found to be the most common process for both micro and nano-scale hybrid manufacturing. Of micro scale hybrid manufacturing schemes, 74.4% use assistive processes as a secondary process because the main purpose of most micro scale hybrid manufacturing is to improve the quality of the process. In nano scale manufacturing, 61.5% of hybrid manufacturing schemes employ assistive processes, since these processes typically focus on the fabrication of parts that are difficult to fabricate using a single, existing process. Based on a summary of published work, future trends in hybrid manufacturing at the micro and nano scale are suggested.