Zirconia was established as one of the chief vital ceramic materials for its superior mechanical permanency and biocompatibility, which make it a popular material for dental and orthopedic applications. This has inspired biomedical engineers to exploit zirconia-based bioceramics for dental restorations and repair of load-bearing bone defects caused by cancer, arthritis, and trauma. Additive manufacturing (AM) is being promoted as a possible technique for mimicking the complex architecture of human tissues, and advancements reported in the recent past make it a suitable choice for clinical applications. AM is a bottom-up approach that can offer a high resolution to 3D printed zirconia-based bioceramics for implants, prostheses, and scaffold manufacturing. Substantial research has been initiated worldwide on a large scale for reformatting and optimizing zirconia bioceramics for biomedical applications to maximize the clinical potential of AM. This book chapter provides a comprehensive summary of zirconia-based bioceramics using AM techniques for biomedical applications and highlights the challenges related to AM of zirconia.