The rapid development of high-energy and high-power laser technology provides an important experimental means for the research of extreme physical state in the laboratory and for the design of large laser facilities for realizing inertial confinement fusion. However, when the incident laser field is very strong, the Kerr effect of materials affects the nominal performance of optical elements. In this work, the impact of Kerr effect on the focusing performance of an optical lens is studied by calculating and comparing the filed patterns of focal spots for three different incident laser beams together with three different levels of light intensities. The traditional transfer function of an optical lens is firstly modified according to the theory of nonlinear Kerr effect. We use the two-dimensional fast Fourier transform algorithm and angular spectrum algorithm to numerically calculate the field distributions of focal spots in the nominal focal plane of lens and its adjacent planes based on the Fresnel diffraction integral formula. The obtained results show that the Kerr effect affects the focusing characteristics of lens, especially for the incidence of high-order Gaussian beams, such as Hermite-Gaussian beams and Laguerre-Gaussian beams. At the same time, the focal length and refractive index of lens also change the field patterns of focal spots. The presented methodology is of great value in engineering applications where the practical problem with beam size up to 100 mm can be calculated using a common laptop computer. The work provides an efficient numerical technique for high-intensity incident laser beams focused by lens that takes Kerr effect into consideration, which has potential applications in high energy density physics and large laser facilities for inertial confinement fusion.