Laser cladding is a well-established technique, with the majority of prior numerical modelling work focused on delivery and melt pool behaviour of powder-based processes. This research presents new investigations into optimised laser beam shaping for the unique characteristics of wire-based processes, where direct substrate heating, as well as heat transfer between the wire and substrate, is important. The value of this subject is the improved deposition rates and dense metallic structures that can be achieved by wire-based deposition processes compared to powder-based material delivery. The within-wire temperature distribution (AISI 316 stainless steel), the heat transfer and direct heating of the substrate (mild steel) are modelled via heat transfer simulations, with three laser beam irradiance distributions. This analysis identified the removal of localised high-temperature regions typically associated to standard Gaussian distributions, and the improved substrate heating that a uniform square beam profile can provide. Experiments using pre-placed wire and a 1.2 kW CO2 laser were analysed using cross-sectional optical microscopy to provide model validation and evidence of improved wire-substrate wetting, while maintaining favourable austenitic metallurgy in the clad material. A key finding of this work is a reduction, from 480 to 190 W/mm2, in the required irradiance for effective melt pool formation when changing from a Gaussian distribution to a uniform square distribution. This also provided a 50% reduction in total energy. The potential improvements to energy efficiency, cost reductions and sustainability improvements are recognised and discussed.