Compact vacuum systems are key enabling components for cold atom technologies, facilitating extremely accurate sensing applications. There has been important progress towards a truly portable compact vacuum system, however size, weight and power consumption can be prohibitively large, optical access may be limited, and active pumping is often required. Here, we present a centilitre-scale ceramic vacuum chamber with He-impermeable viewports and an integrated diffractive optic, enabling robust laser cooling with light from a single polarization-maintaining fibre. A cold atom demonstrator based on the vacuum cell delivers 10 7 laser-cooled 87 Rb atoms per second, using minimal electrical power. With continuous Rb gas emission active pumping yields a 10 −7 mbar equilibrium pressure, and passive pumping stabilises to 3 × 10 −6 mbar, with a 17 day time constant. A vacuum cell, with no Rb dispensing and only passive pumping, has currently kept a similar pressure for more than 500 days. The passive-pumping vacuum lifetime is several years, estimated from short-term He throughput, with many foreseeable improvements. This technology enables wide-ranging mobilization of ultracold quantum metrology.