Laser In Situ Joining as a Novel Approach for Joining Large‐Scale Thermoplastic Carbon Fiber‐Reinforced Polymer Aircraft Structures
Eric Pohl,
Maurice Langer,
Peter Rauscher
et al.
Abstract:Thermoplastic matrix composites are a viable option to reduce the carbon footprint during the life of an aircraft due to their ability to be molten and resolidified again. Tape‐based layup processes, such as automated tape placement, are well‐examined but have not seen extensive use in large‐scale joining applications, since they have to be processed layer‐by‐layer. In contrast, the advanced laser in situ joining method (CONTIjoin) utilizes fully consolidated and cut‐to‐size multilayered laminates, enabling th… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.