Abstract. The United States Environmental Protection Agency (US EPA) list of Hazardous Air Pollutants (HAPs) includes metal elements suspected or associated with development of cancer. Traditional techniques for detecting and quantifying toxic metallic elements in the atmosphere are either not real time, hindering identification of sources, or limited by instrument costs. Spark emission spectroscopy is a promising and cost effective technique that can be used for analyzing toxic metallic elements in real time. Here, we have developed a cost-effective spark emission spectroscopy system to quantify the concentration of toxic metallic elements targeted by US EPA. Specifically, Cr, Cu, Ni, and Pb solutions were diluted and deposited on the ground electrode of the spark emission system. Least Absolute Shrinkage and Selection Operator (LASSO) was optimized and employed to detect useful features from the spark-generated plasma emissions. The optimized model was able to detect atomic emission lines along with other features to build a regression model that predicts the concentration of toxic metallic elements from the observed spectra. The limits of detections (LOD) were estimated using the detected features and compared to the traditional single-feature approach. LASSO is capable of detecting highly sensitive features in the input spectrum; however for some elements the single-feature LOD marginally outperforms LASSO LOD. The combination of low cost instruments with advanced machine learning techniques for data analysis could pave the path forward for data driven solutions to costly measurements.