Laser surface texturing has attracted growing interest, particularly in functional surface modification. Lasers with nanosecond pulse widths and infrared wavelengths are commonly used for metallic surface texturing because of their low cost and potential for fabricating a large range of textures. In this research, a laser with a nanosecond pulse width and infrared wavelength was used for the surface texturing of 316 stainless steels. Standard grooved and near-isotropic surface textures, as well as novel porous texture and feather-like dendrite texture, were fabricated through single-time laser texturing. Water contact angle tests were performed on the post-process surfaces, and they showed wettability changes from superhydrophilic to superhydrophobic according to different types of textures. Discussion on the relationship between water contact angle and surface roughness, groove width/depth ratio, surface carbon and oxygen contents indicated that it is the surface morphology that impacts changes in wettability. The comprehensive formation mechanism of different textures and the wettability control mechanism through different textures have been systematically discussed. For the first time, the three-level (point-line-area) laser surface ablation mechanism has been established. The proposed findings can be used for future laser texturing process designs on metals using lasers with a nanosecond pulse width and an infrared wavelength for various applications including wettability modification.