Facile fabrication of highly conductive and self-encapsulated graphene electronics is in urgent demand for carbon-based integrated circuits, field effect transistors, optoelectronic devices, and flexible sensors. The current fabrication of these electronic devices is mainly based on layer-by-layer techniques (separate circuit preparation and encapsulation procedures), which show multistep fabrication procedures, complicated renovation/repair procedures, and poor electrical property due to graphene oxidation and exfoliation. Here, we propose a laser-guided interfacial writing (LaserIW) technique based on self-confined, nickel-catalyzed graphitization to directly fabricate highly conductive, embedded graphene electronics inside multilayer structures. The doped nickel is used to induce chain carbonization, which firstly enhances the photothermal effect to increase the confined temperature for initial carbonization, and the generated carbon further increases the light-absorption capacity to fabricate high-quality graphene. Meanwhile, the nickel atoms contribute to the accelerated connection of carbon atoms. This interfacial carbonization inherently avoids the exfoliation and oxidation of the as-formed graphene, resulting in an 8-fold improvement in electrical conductivity (~20,000 S/m at 7,958 W/cm
2
and 2 mm/s for 20% nickel content). The LaserIW technique shows excellent stability and reproducibility, with ±2.5% variations in the same batch and ±2% variations in different batches. Component-level wireless light sensors and flexible strain sensors exhibit excellent sensitivity (665 kHz/(W/cm
2
) for passive wireless light sensors) and self-encapsulation (<1% variations in terms of waterproof, antifriction, and antithermal shock). Additionally, the LaserIW technique allows for one-step renovation of in-service electronics and nondestructive repair of damaged circuits without the need to disassemble encapsulation layers. This technique reverses the layer-by-layer processing mode and provides a powerful manufacturing tool for the fabrication, modification, and repair of multilayer, multifunctional embedded electronics, especially demonstrating the immense potential for in-space manufacturing.