Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Laser structuring enables modification of sample topography, surface chemistry, and/or physical properties of materials. Examples of these processes are ripple, nap or wall formation, surface oxidation, induction of polymerization reactions, or changes in crystallinity or contact angle. These – most of the time – interrelated modifications are exploited widely for biomedical applications. They range from cell-repellent surfaces for easy-to-replace cardiac pacemakers, control of cell proliferation required in regenerative medicine, to increased cell adhesion for cell arrays. Furthermore, ns-laser-induced nanoripples were used for formation of gold nanowires for future surface plasmon resonance sensors directly integrated into biotechnological devices. Additive nano- and microscale manufacturing by two-photon polymerization allows for considerable progress in cell scaffold formation, paving the path for in vitro–grown organs, bones, and cartilages. The very same fs-laser-based technique was also used for biomimetic microneedles with enhanced liquid spreading on their surface. Microneedles are promising candidates for low-cost, high-throughput drug delivery and vaccination applicable even by nonmedically trained personnel. Microfluidic systems fabricated by fs-lasers have enabled progress in 3D microscopy of single cells and in studies on thrombocyte activation with the help of nanoanchors. Explicating the abovementioned and further biomedical applications, the authors put special focus on the achieved limits pointing out what scientists have accomplished so far in their pursuit of extreme scales.
Laser structuring enables modification of sample topography, surface chemistry, and/or physical properties of materials. Examples of these processes are ripple, nap or wall formation, surface oxidation, induction of polymerization reactions, or changes in crystallinity or contact angle. These – most of the time – interrelated modifications are exploited widely for biomedical applications. They range from cell-repellent surfaces for easy-to-replace cardiac pacemakers, control of cell proliferation required in regenerative medicine, to increased cell adhesion for cell arrays. Furthermore, ns-laser-induced nanoripples were used for formation of gold nanowires for future surface plasmon resonance sensors directly integrated into biotechnological devices. Additive nano- and microscale manufacturing by two-photon polymerization allows for considerable progress in cell scaffold formation, paving the path for in vitro–grown organs, bones, and cartilages. The very same fs-laser-based technique was also used for biomimetic microneedles with enhanced liquid spreading on their surface. Microneedles are promising candidates for low-cost, high-throughput drug delivery and vaccination applicable even by nonmedically trained personnel. Microfluidic systems fabricated by fs-lasers have enabled progress in 3D microscopy of single cells and in studies on thrombocyte activation with the help of nanoanchors. Explicating the abovementioned and further biomedical applications, the authors put special focus on the achieved limits pointing out what scientists have accomplished so far in their pursuit of extreme scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.