An investigation on the tribological properties of GCr15 sliding against NM600 was carried out using a high-temperature friction and wear tester. As the temperature rose from room temperature to 300 °C, the average friction coefficient of NM600 increased rapidly, then decreased rapidly, and then became stable. The wear volume and specific wear rate of NM600 increased rapidly, then decreased rapidly, and then increased slowly. The wear mechanism and matrix properties of the tested steel at different temperatures are the main reasons for the above results. At 20–50 °C, the main wear mechanism was adhesive wear, fatigue wear, and abrasive wear. At 100–150 ℃, the wear mechanism was mainly adhesive wear, fatigue wear, abrasive wear, and oxidation wear. At 200–300 °C, the wear mechanism was mainly oxidation wear and abrasive wear.