Laser-shock-peening technology is an international research hotspot in the surface-strengthening field, which utilizes the mechanical effects of laser-induced plasma shock waves to effectively improve the fatigue performance of metallic components by introducing the gradient microstructures and compressive residual stress into the surface layer of processed materials. The fatigue failure caused by high-frequency vibrations in aeroengines during service is the most important threat to flight safety, and this case is more prominent for military aeroengines because their service situation is harsher. The present paper focuses on components such as high-temperature components, fan/compressor blade, and thin-walled weldments, and it systematically introduces the researching findings about surface nanocrystallization and compressive residual stress formation mechanism in typical aeronautical metallic materials treated by laser shock peening. The contents mainly involve the characteristics, formation process, fatigue resistance mechanism, thermal stability of residual compressive stress, and nanocrystallization generated by laser shock peening.