2011
DOI: 10.1177/09544054jem1971
|View full text |Cite
|
Sign up to set email alerts
|

Laser power requirement for cutting thick-section steel and effects of processing parameters on mild steel cut quality

Abstract: The high-power fibre laser presents a possibility for the application of solid-state lasers in thick-section metal cutting, a field which has been dominated by high-power CO2 lasers. The current paper presents the lumped-parameter formulation of the laser power requirement as a function of cutting speed for oxygen-assisted laser cutting of mild steel and nitrogen-assisted laser cutting of stainless steel. The calculated laser power requirement is compared with the incident laser power used in the cutting of 15… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
17
0
2

Year Published

2012
2012
2022
2022

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 34 publications
(20 citation statements)
references
References 15 publications
1
17
0
2
Order By: Relevance
“…This is because low cutting speeds favor a larger overlapping of laser pulses (i.e., increase of the thermal energy input per unit of time), which is more sensitive to laser power changes. A similar effect has also been claimed by other studies [2,11,12,25,[29][30][31]. At low oxygen pressure, the stronger influence of laser power is directly related to the cooling effect of the assist gas: a low O 2 pressure is less able to cool the sheet, thus kerf width is more sensitive to heat power changes.…”
Section: Top Kerf Widthsupporting
confidence: 80%
“…This is because low cutting speeds favor a larger overlapping of laser pulses (i.e., increase of the thermal energy input per unit of time), which is more sensitive to laser power changes. A similar effect has also been claimed by other studies [2,11,12,25,[29][30][31]. At low oxygen pressure, the stronger influence of laser power is directly related to the cooling effect of the assist gas: a low O 2 pressure is less able to cool the sheet, thus kerf width is more sensitive to heat power changes.…”
Section: Top Kerf Widthsupporting
confidence: 80%
“…In examining the power requirement during laser cutting of a metal workpiece using inert and oxidizing assist gas jets, Wandera et al [23] developed a theoretical model to estimate the power requirement for melting the kerf volume and the inevitable conduction power losses. Schulz et al [24] developed an analytical approximation of the heat conduction losses during laser cutting of metals and provided an expression that can be used to estimate the temperature change in the substrate metal during laser cutting; the temperature change in the substrate metal is inversely proportional to the Peclet number which is directly proportional to the cutting speed.…”
Section: Laser Fusion Cutting Using An Inert Assist Gas Jetmentioning
confidence: 99%
“…The maximum achievable cutting speed for a given laser power level is the maximum cutting speed at which the cut edges are separated. Wandera et al [23,31] tested the maximum cutting speeds with the corresponding required laser power levels for the cutting of 10-mm stainless steel, 15-mm mild steel, and 4-mm aluminium using the fiber laser as presented in Figure 5. Using 5 kW fiber laser power, stainless steel of 10-mm thickness can be cut at a maximum cutting speed of 1.5 m/min with nitrogen assist gas jet and mild steel of 15-mm thickness can be cut at a cutting speed of 1.8 m/min with oxygen assist gas jet.…”
Section: Maximum Achievable Cutting Speedmentioning
confidence: 99%
“…Do cięcia laserowego zalecany jest podstawowy, jednomodowy (gaussowski) rozkład mocy wiązki laserowej -TEM 00 , który zapewnia możliwość zogniskowania wiązki laserowej do jak najmniejszej średnicy i największych głęboko-ści (najmniejszej zmiany mocy wiązki na jej długości). Zdolność ogniskowania wiązki i jej stabilność są szczególnie ważne przy cięciu profilowym cienkich blach ze stali węglowych o grubości do 3,2 mm [8,15]. mm·mrad (1) gdzie: w o -promień przewężenia wiązki laserowej (wymiary ogniska), Θ o -kąt odchylenia wiązki laserowej w polu dalekim, K -współ-czynnik propagacji wiązki laserowej, M 2 -w spółczynnik wielokrotności ograniczonej dyfrakcji, λ -długość fali promieniowania laserowego (rys.…”
Section: Mechanizm Cięcia Laserowegounclassified
“…W przypadku stali niestopowych, stopowych i wysokostopowych jest to ok. 60% energii cięcia, natomiast w przypadku metali reaktywnych, np. tytanu, wartość dodatkowej energii cieplnej może osią-gać wartość 90% [4,5,8]. Technika ta jest zalecana do cięcia z dużymi prędkościami stali stopowych, wysokostopowych, stopów niklu, stopów miedzi i stopów tytanu, zwłaszcza gdy dopuszczalna jest obecność warstwy tlenków na ciętych krawędziach [4,5,7].…”
Section: Techniki Cięcia Laserowego Metaliunclassified