Several quantum cryptographic schemes have been proposed and realized experimentally in the past. However, even with an advancement in quantum technology and escalated interest in the designing of direct secure quantum communication schemes there are not many experimental implementations of these cryptographic schemes. In this paper, we have provided a set of optical circuits for such quantum cryptographic schemes, which have not yet been realized experimentally by modifying some of our theoretically proposed secure communication schemes. Specifically, we have proposed optical designs for the implementation of two single photon and one entangled state based controlled quantum dialogue schemes and subsequently reduced our optical designs to yield simpler designs for realizing other secure quantum communication tasks, i.e., controlled deterministic secure quantum communication, quantum dialogue, quantum secure direct communication, quantum key agreement, and quantum key distribution. We have further proposed an optical design for an entanglement swapping based deterministic secure quantum communication and its controlled counterpart. Finally, a brief discussion on security of the schemes, hacking strategies against different optical elements and corresponding countermeasures is also presented.