We examine the effect of grain size on the dynamic failure tantalum during laser-shock compression and release and identify a significant effect of grain size on spall strength,which is opposite the prediction of the Hall-Petch relationship: monocrystals have a higher spall strength than polycrystals, which, in turn, are stronger in tension than ultrafine grain sized specimens. Post-shock characterization reveals ductile failure which evolves by void nucleation, growth, and coalescence. Whereas in the monocrystal the voids grow in the interior, nucleation is both intra and intergranular in the poly and UFG crystals. The fact that spall is primarily intergranular in both poly and nanocrystalline samples is strong evidence for higher growth rates of intergranular voids, which have a distinctly oblate spheroid shape in contrast with intragranular voids, which are more spherical. Consistent with prior literature and theory we also identify an increase with spall strength with strain rate from 6x10 6 to 5x10 7 s-1. Molecular dynamics calculations agree with the experimental results and also predict grain-boundary separation in the spalling of polycrystals as well as an increase in spall strength with strain rate. An analytical model based on the kinetics of nucleation and growth of intra and intergranular voids and extending the