The paper presents the study results of laser modification of FeB-Fe 2 B surface layers produced on Vanadis-6 steel using pack cementation method. Microstructure, x-ray phase analysis, chemical composition study using wave dispersive spectrometry method, microhardness, corrosion resistance as well as surface condition, roughness, and wear resistance were investigated. The diffusion boronizing processes were performed at 900°C for 5 h in the EKabor® powder mixture. The boronized layers had a dual-phase microstructure composed of two types of iron borides, FeB and Fe 2 B, and their microhardness ranged from 1800 to 1400 HV. The laser surface modification was carried out on specimens after diffusion boronizing process using CO 2 laser with a nominal power of 2600 W. Laser beam power used in this experiment was equal to 1040 W and was constant. While the three values of scanning speed were used: 19, 48, and 75 mm/s. During laser modification, the multiple tracks were made where distance between of axis tracks was equal to 0.5 mm. As a result of this process, microstructure consisted of remelted zone, heat-affected zone, and substrate was obtained. In remelted zone, the boron-martensite eutectic was observed. Boronized layers after laser modification were characterized by the mild gradient of microhardness from surface to the substrate and their value was dependent on the scanning speed used and was between 1700 and 1100 HV. Corrosion resistance tests revealed reducing the current of corrosion in case of laser modification process. Wear resistance of laser modified specimens was improved in comparison to diffusion boronized layers.