Ti and Ti alloys have charming comprehensive properties (high specific strength, strong corrosion resistance, and excellent biocompatibility) that make them the ideal choice in orthopedic and dental applications, especially in the particular fabrication of orthopedic and dental implants. However, these alloys present some shortcomings, specifically elastic modulus, wear, corrosion, and biological performance. Beta-titanium (β-Ti) alloys have been studied as low elastic modulus and low toxic or non-toxic elements. The present work summarizes the improvements of the properties systematically (elastic modulus, hardness, wear resistance, corrosion resistance, antibacterial property, and bone regeneration) for β-Ti alloys via surface modification to address these shortcomings. Additionally, the shortcomings and prospects of the present research are put forward. β-Ti alloys have potential regarding implants in biomedical fields.