To produce additively manufactured components, various process advantages can be combined by using the tungsten inert gas (TIG) hot wire process with ohmic wire preheating. Unlike other various gas metal arc welding processes, with TIG, it is possible to influence the material properties by decoupling the energy supply and the welding filler material. Compared to the conventional TIG cold wire process, the hot wire process can achieve an increased deposition rate. To be able to use this combined process for the manufacturing of filigree components consisting of steel and titanium alloys, a system concept with a hermetically sealed welding chamber was developed. This concept is particularly designed for an individual use and is also intended to be used for producing prototypes and small quantities. In the investigations, the application of the TIG hot wire process is explored, regarding the material properties to be achieved in combination with the manufacturing plant concept developed with a sealed welding chamber. In this context, the mechanical-technological properties and detailed microstructural analyses are determined based on selected welding tests to evaluate and further develop the quality of the components produced. A final transfer of the findings to the process behavior by optimizing the interaction of the process parameters considered should lead to an increase in productivity, robustness, and reproducibility. The experimental setup’s potential for applicability in the field of additive manufacturing will be demonstrated based on this elaboration.