2020
DOI: 10.48550/arxiv.2001.07778
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Lasso for hierarchical polynomial models

Hugo Maruri-Aguilar,
Simon Lunagomez

Abstract: In a polynomial regression model, the divisibility conditions implicit in polynomial hierarchy give way to a natural construction of constraints for the model parameters. We use this principle to derive versions of strong and weak hierarchy and to extend existing work in the literature, which at the moment is only concerned with models of degree two. We discuss how to estimate parameters in lasso using standard quadratic programming techniques and apply our proposal to both simulated data and examples from the… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 19 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?