We performed pulmonary function (PF) tests and factors affecting PF evaluation in 120 patients with inhalation injury to evaluate the effects of pulmonary rehabilitation (PR) in burn patients with inhalation injury. Patients were randomized into pulmonary rehabilitation (PR) group and conventional rehabilitation (CON) group. PF tests, including forced vital capacity (FVC), 1-s forced expiratory volume FEV1), maximum voluntary ventilation (MVV), and respiratory muscles strength (maximal expiratory pressure (MEP) and maximal inspiratory pressure (MIP)), were measured by mouth pressure meter in the sitting position. Diffusing capacity for carbon monoxide (DLco) was determined by the single-breath carbon monoxide technique. Peak cough flow (PCF) was measured by a peak flow meter. Diaphragmatic mobility (DM) was evaluated on anteroposterior fluoroscopy. All evaluations were performed in all groups at baseline and after 12 weeks. There were no differences in evaluations between the PR group and CON group before the intervention. There were significant improvements in the PCF and MIP (%) changes, taken before and after rehabilitation in the PR group, compared with the changes in the CON group (p = 0.01, and p = 0.04). There were no significant changes in the other parameters in the PR group compared with the changes in the CON group (p > 0.05). There were significant differences in DLco (%), MIP, MIP (%), and DM between the PR group and the CON group (p = 0.02, p = 0.005, and p = 0.001) after 12 weeks of rehabilitation. There were no differences between the PR group and CON group after 12 weeks rehabilitation in the other parameters (p > 0.05). PR for patients with major burns and smoke inhalation induced improved PCF, MIP, MIP (%), DLco (%), and DM. These results show that PR should be a fundamental component of the treatment program for patients with burns.