2023
DOI: 10.48550/arxiv.2303.11000
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Late Meta-learning Fusion Using Representation Learning for Time Series Forecasting

Abstract: Meta-learning, decision fusion, hybrid models, and representation learning are topics of investigation with significant traction in time-series forecasting research. Of these two specific areas have shown state-of-the-art results in forecasting: hybrid meta-learning models such as Exponential Smoothing -Recurrent Neural Network (ES-RNN) and Neural Basis Expansion Analysis (N-BEATS) and feature-based stacking ensembles such as Feature-based FORecast Model Averaging (FFORMA). However, a unified taxonomy for mode… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 42 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?