This thesis is focusing on the impact of Paratethys and Mediterranean water bodies over the Eurasian climate and the interplay between climate, tectonics and biosphere during the late Miocene. This target was the interval between 12.7 and 7.65 Ma for Paratethys, following the Eastern Paratethys restriction and isolation, and 7.2−6.5 Ma (the early Messinian) in Mediterranean, zooming on the effects of gateway restrictions over the eastern Mediterranean and the new born Aegean domain. In both cases restriction is overlapping with large scale climatic changes and tectonic reconfiguration, leading a sort of symbiotic relationship. Paratethys was a giant epicontinental sea that covered a large part of Eurasia since Paleogene. Due to the Eurasia-Afro-Arabia collision and formation of the Alpine-Himalayan belt (Rögl, 1999; Popov et al., 2006), the Paratethys was divided during the late Miocene in smaller basins that in time were isolated of each other. The protracted isolation and intense continentalisation of paratethyan realm led to changes in humidity distribution, basin connectivity, sediment sources and salinity. These changes had in turn major consequences over water circulation, water availability, vegetation cover and biota. These changes are more intense after 11.6 Ma, when the Eastern Paratethys lost any sustained marine connection, evolving into an enclosed system with endemic fauna (Harzhauser and Piller, 2007). Mediterranean Sea is a Mezozoic oceanic relic squeezed between Africa, Europe, Anatolia and Arabia, as Africa continued to subduct beneath the European plate. As opposed to Paratethys, it maintained the open connection with the ocean until Messinian, when the two Atlantic gateways (Betic and Rifian corridors) closed for a short time, isolating the basin. The cut off resulted in a dramatic drop down and onset of evaporitic precipitation in marginal basins, the event receiving the name of Messinian Salinity Crisis (5.97−5.55). The restriction affected all marine ecosystems, due to changes in salinity and stratification of water column. The main objectives of this thesis were: (1) build valid paleo-temperatures records for both basins based on biomarkers; (2) reconstruct the hydrology for the late Miocene time interval; (3) identify vegetation composition and changes; (4) identify paleo-fires in the late Miocene sediment records; (5) identify the biotic response to the overall climate and tectonic changes. All the above objectives were attained with results published in specific journals (Chapters 5−7). Based on Panagia section (Taman Peninsula, Russia) the longest Paratethys temperature record was completed (~5 Myr), covering the interval between 12.7 and 7.65 Ma. A comprehensive SST and MAT records was obtained, as well as soil pH and carbon (δ13C) and hydrogen (δ2H) stable isotopic compositions on n-alkanes and alkenones. The main findings are concentrated around three prolonged periods with severe droughts affecting the late Miocene circum-Paratethys region peaking at 9.65, 9.4 and 7.9 Ma, associated with a transition towards open land vegetation, intensification of fire activity and enhanced evaporation and aridity. The time intervals with dryer conditions recorded in Panagia coincide with periods of mammal turnover and dispersal in Eurasia indicating that major environmental changes occurred in the circum-Paratethys region and Paratethys fragmentation had a great impact on the terrestrial ecosystems, when periods of prolonged droughts generated biotic crises and animal displacements across the Eurasian continent. The δ13CC29n-alkane values and charcoal morphologies from Panagia indicate an increased contribution of C4 plants adapted to drier conditions at 9.66 Ma. Similarly high δ13CC29n-alkane values continue until 9.4 Ma, when in Western Europe increased seasonality accelerated the demise of the evergreen subtropical woodlands and expansion of grasslands from Anatolia and Middle East to Europe. As a result of basin fragmentation and climatic stress, the Eastern Paratethys sub-basins progressively lost their marine properties and turned into brackish-fresh water bodies fed primarily by riverine input. The shallower areas became in time emerged, obstructing connections and isolating the biota, inducing rapid adjusting or extinctions. Thus, the Paratethys harbored a highly endemic fauna (Rögl, 1999), such as dwarf whales, dolphins, seals (among mammals), as well as fish and other taxa (mollusks, ostracods, diatoms, foraminifera, algae, etc.). Collectively the data structured and analyzed in chapter five support a model in which the Eastern Paratethys evolved as a largely (en)closed system, registering paleoenvironmental signals that are governed by interbasinal connectivity (or lack of it) and regional climate changes in the basin catchment. Acting as an important source of humidity for Western and Central Asia, the size and areal extent of the Paratethys water body is likely to have had a major impact on hydroclimate patterns in the Eurasian interior, with the cumulative fluctuations in both hydrology and surface temperature enhancing the aridity and seasonality, with different partition of moisture over the year. Our combined data suggests a decoupling of Paratethys from the global system as isolation advanced, dominated by regional tectonics and ultimately the Paratethys volume and areal extent reduction.