The Northwestern Gulf of Mexico Basin is an ideal natural laboratory to study and understand source-to-sink systems. An extensive grid of high-resolution seismic data, hundreds of sediment cores and borings and a robust chronostratigraphic framework were used to examine the evolution of late Quaternary depositional systems of the northwestern Gulf of Mexico throughout the last eustatic cycle (~125 ka to Present). The study area includes fluvial systems with a wide range of drainage basin sizes, climate settings and water and sediment discharges. Detailed paleogeographic reconstructions are used to derive volumetric estimates of sediment fluxes (Volume Accumulation Rates). The results show that the response of rivers to sea-level rise and fall varied across the region. Larger rivers, including the former Mississippi, Western Louisiana (presumably the ancestral Red River), Brazos, Colorado and Rio Grande rivers, constructed deltas that advanced across the shelf in step-wise fashion during Marine Isotope Stages (MIS) 5-2. Sediment delivery to these deltas increased during the overall sea-level fall due to increases in drainage basin area and erosion of sediment on the inner shelf, where subsidence is minimal, and transport of that sediment to the more rapidly subsiding outer shelf. The sediment supply from the Brazos River to its delta increased at least 3-fold and the supply of the Colorado River increased at least 6-fold by the late stages of sea-level fall through the lowstand. Repeated filling and purging of fluvial valleys from ~119-22 ka contributed to the episodic growth of falling-stage deltas. During the MIS 2 lowstand (~22-17 ka), the Mississippi River abandoned its fallingstage fluvial-deltaic complex on the western Louisiana shelf and drained to the Mississippi Canyon. Likewise, the Western Louisiana delta was abandoned, presumably due to merger