Vertical slab-tearing has been widely reported in modern convergent settings profoundly influencing subduction and mantle dynamics. However, evaluating a similar impact in ancient convergent settings, where oceanic plates have been subducted and the geological record is limited, remains challenging. In this study, we correlate the lower mantle structure, which retained the past subduction configuration, with the upper-plate geological record to show a deep slab rupture interpreted as a large-scale tearing event in the early Mesozoic beneath southwestern Gondwana. For this purpose, we integrated geochronological and geological datasets with P-wave global seismic tomography and plate-kinematic reconstructions. The development of a Late Triassic-Early Jurassic slab-tearing episode supports (i) a slab gap at lower mantle depths, (ii) a contrasting spatiotemporal magmatic evolution, (iii) a lull in arc activity, and (iv) intraplate extension and magmatism in the Neuquén and Colorado basins. This finding not only has implications for identifying past examples of a fundamental process that shapes subduction zones, but also illustrates an additional mechanism to trigger slab-tearing in which plate rupture is caused by opposite rotation of slab segments.