Abstract. Atlantic Water (AW) advection plays an important role for climatic, oceanographic and environmental conditions in the eastern Arctic. Situated along the only deep connection between the Atlantic and the Arctic Ocean, the Svalbard Archipelago is an ideal location to reconstruct the past AW advection history and document its linkage with local glacier dynamics, as illustrated in the present study of a sedimentary record from Woodfjorden (northern Spitsbergen) spanning the last ~ 15 500 years. Sedimentological, micropalaeontological and geochemical analyses were used to reconstruct changes in marine environmental conditions, sea-ice cover and glacier activity. Data illustrate a partial breakup of the Svalbard–Barents–Sea Ice Sheet from Heinrich Stadial 1 onwards (until ~ 14.6 ka BP). During the Bølling-Allerød (~ 14.6–12.7 ka BP), AW penetrated as a bottom water mass into the fjord system and contributed significantly to the destabilisation of local glaciers. During the Younger Dryas (~ 12.7–11.7 ka BP), it intruded into intermediate waters while evidence for a glacier advance is lacking. A short-term deepening of the halocline occurred at the very end of this interval. During the early Holocene (~ 11.7–7.8 ka BP), mild conditions led to glacier retreat, a reduced sea-ice cover and increasing sea surface temperatures, with a brief interruption during the Preboreal Oscillation (~ 11.1–10.8 ka BP). During the late Holocene (~ 1.8–0.4 ka BP), a slightly reduced AW inflow and lower sea surface temperatures compared to the early Holocene are reconstructed. Glaciers, which previously retreated to the shallower inner parts of the Woodfjorden system, likely advanced during the late Holocene. In particular, as topographic control in concert with the reduced summer insolation partly decoupled glacier dynamics from AW advection during this recent interval.