Theories of selective attention in associative learning posit that the salience of a cue will be high if the cue is the best available predictor of reinforcement (high predictiveness). In contrast, a different class of attentional theory stipulates that the salience of a cue will be high if the cue is an inaccurate predictor of reinforcement (high uncertainty). Evidence in support of these seemingly contradictory propositions has led to: (i) the development of hybrid attentional models that assume the coexistence of separate, predictiveness-driven and uncertainty-driven mechanisms of changes in cue salience; and (ii) a surge of interest in identifying the neural circuits underpinning these mechanisms. Here, we put forward a formal attentional model of learning that reconciles the roles of predictiveness and uncertainty in salience modification. The issues discussed are relevant to psychologists, behavioural neuroscientists and neuroeconomists investigating the roles of predictiveness and uncertainty in behaviour.