Background
The extensile lateral approach (ELA) has been widely used to treat displaced intra-articular calcaneal fractures (DIACFs) and remains the gold standard procedure. Orthopedic surgeons are extremely concerned of the high rate of wound complications. This study intended to report a new surgical technique of the lateral wall osteotomy combined with an embedded biodegradable implant for treating DIACFs and assess clinical and radiological results.
Methods
From May 2013 to December 2015, a total of 17 patients with 19 calcaneal fractures underwent surgical treatment using our new technique. Radiographic images, computed tomography (CT) scans, and magnetic resonance (MR) images of the operative limb were obtained to assess fracture healing and biodegradable implant degradation. American Orthopaedic Foot and Ankle Society (AOFAS) ankle/hindfoot score at the last follow-up was obtained to assess functional result for all cases. Böhler’s and Gissane’s angles, width, and height of the injured calcaneus were analyzed using preoperative and last follow-up radiographic images.
Results
All radiological parameters were significantly improved at the last follow-up, with an increase of 15.58°, 8.38°, and 7.65 mm in Böhler’s angle, Gissane’s angle, and calcaneal height, respectively, and a decrease of 2.51 mm in calcaneal width (
p
< 0.05). Mean AOFAS score at the last follow-up was 84.37 ± 9.98, with 9, 6, and 4 feet, having excellent, good, and fair rates, respectively. None had nonunion, delayed union, or malunion after a mean follow-up of 34.69 ± 5.22 months. One superficial infection occurred 6 days post-surgery.
Conclusions
Osteotomy of the lateral wall of the calcaneus allows tension-free suturing and avoids damage to penetrating branches of the lateral calcaneal artery (LCA). Biodegradable implants are easy to reshape and do not require surgical removal. However, they should be limited to Sander’s type II and III fractures only.
Level of evidence
Level IV, case series without controls