Erythrocyte deformability correlates with various diseases. Single-cell measurements via optical tweezers (OTs) enable quantitative exploration but may encounter inaccuracies due to erythrocyte life cycle mixing. We present a three-step methodology to address these challenges. Firstly, density gradient centrifugation minimizes erythrocyte variations. Secondly, OTs measure membrane shear force across layers. Thirdly, MATLAB analyzes dynamic cell areas. Results combined with membrane shear force data reveal erythrocyte deformational capacity. To further characterize the deformability of diseased erythrocytes, the experiments used glutaraldehyde-fixed erythrocytes to simulate diseased cells. OTs detect increased shear modulus, while image recognition indicates decreased deformation. The integration of OTs and image recognition presents a comprehensive approach to deformation analysis, introducing novel ideas and methodologies for investigating erythrocytic lesions.