The roots of lycophytes branch through dichotomy or bifurcation, which means that the root apex splits into two daughter roots. This is morphologically distinct from lateral root (LR) branching in the extant euphyllophytes, where LRs develop along the root axis at different distances from the apex. The process of root bifurcation is poorly understood, while such knowledge can be important, as it may represent an evolutionarily ancient strategy that roots recruited to form new stem cells or meristems. In this study, we examined root bifurcation in the lycophyte Selaginella moellendorffii. We characterized an in vitro developmental time-frame based on repetitive apex bifurcations, allowing us to sample different stages of dichotomous root branching and analyze the root meristem and root branching in S. moellendorffii at the microscopical and transcriptional level. Our results show that, in contrast to previous assumptions, initial cells in the root meristem are mostly not tetrahedral but rather show an irregular shape. Tracking down the early stages during root branching argues for the occurrence of a symmetric division of the single initial cell resulting in two apical stem cells allowing for root meristem bifurcation. Moreover, we generated a S. moellendorffii root branching transcriptome, which resulted in the delineation of a subset of core meristem genes. The occurrence of multiple meristem-related orthologues in this dataset, including inversely correlated expression profiles of a SCARECROW (SCR) versus a RETINOBLASTOMA-RELATED1 (RBR1) homologue suggests the presence of conserved pathways in the control of meristem and root stem cell establishment or maintenance.