Jets can become collimated as they propagate through dense environments and understanding such interactions is crucial for linking physical models of the environments to observations. In this work, we use 3D special-relativistic simulations to study how jets propagate through the environment created around a neutron star merger remnant by neutrino-driven winds. We simulate four jets with two different initial structures, top-hat and Gaussian, and two luminosities. After jet breakout, we study the angular jet structures and the resulting afterglow light curves. We find that the initial angular structures are efficiently washed out during the propagation, despite the small wind mass of only ∼ 10 −3 M . The final structures depend, however, on the jet luminosity, as less energetic jets are more strongly collimated. Although entrainment of baryons leads to only moderate outflow Lorentz factors (≈ 40), all simulated jets can well reproduce the afterglow observed in the aftermath of GW170817. The inferred physical parameters (e.g. inclination angle, ambient particle number density), however, vary substantially between the fits and appear to be sensitive to smaller details of the angular jet shape, indicating that observationally inferred parameters may depend sensitively on the employed jet models.