Summary
An analytical approach using the three‐dimensional displacement of a soil is investigated to provide analytical solutions of the horizontal response of a circular pile subjected to lateral soil movements in nonhomogeneous soil. The lateral stiffness coefficient of the pile shaft in nonhomogeneous soil is derived from the rocking stiffness coefficient that is obtained from the analytical solution, taking into account the three‐dimensional displacement represented in terms of scalar potentials in the elastic three‐dimensional analysis. The relationship between horizontal displacement, rotation, moment, and shear force of a pile subjected to lateral soil movements in nonhomogeneous soil is obtainable in the form of the recurrence equation. For the relationship between the lateral pressure and the horizontal displacement, it is assumed that the behavior is linear elastic up to lateral soil yield, and the lateral pressure is constant under the lateral soil yield. The interaction factors between piles subjected to both lateral load and moment are calculated, taking into account the lateral soil movement. The formulation of the lateral displacement and rotation of the pile base subjected to lateral loads in nonhomogeneous soils is presented by taking into account the Mindlin equation and the equivalent thickness for soil layers in the equivalent elastic method. For lateral movement, lateral pressure, bending moment, and interaction factors, there are small differences between results obtained from the 1‐D and the 3‐D displacement methods except a very flexible pile. Copyright © 2015 John Wiley & Sons, Ltd.