Psoriasis is the result of uncontrolled keratinocyte proliferation, and its pathogenesis involves the dysregulation of the immune system. The interplay among cytokines released by dendritic, Th1, Th2, and Th17 cells leads to the phenotypical manifestations seen in psoriasis. Biological therapies target the cytokine-mediated pathogenesis of psoriasis and have improved patient quality of life. This review will describe the underlying molecular pathophysiology and biologics used to treat psoriasis. A review of the literature was conducted using the PubMed and Google Scholar repositories to investigate the molecular pathogenesis, clinical presentation, and current therapeutics in psoriasis. Plaque psoriasis’, the most prevalent subtype of psoriasis, pathogenesis primarily involves cytokines TNF-α, IL-17, and IL-23. Pustular psoriasis’, an uncommon variant, pathogenesis involves a mutation in IL-36RN. Currently, biological therapeutics targeted at TNF-α, IL-12/IL-23, IL-17, and IL-23/IL-39 are approved for the treatment of moderate to severe psoriasis. More studies need to be performed to elucidate the precise molecular pathology and assess efficacy between biological therapies for psoriasis. Psoriasis is a heterogenous, chronic, systemic inflammatory disease that presents in the skin with multiple types. Recognizing and understanding the underlying molecular pathways and biological therapeutics to treat psoriasis is important in treating this common disease.