In the line of previous work done at CEA Grenoble, large size experiments were performed with the support of CERN for the validation of the LHC two phase superfluid helium cooling scheme. In order to be as close as possible to the real configuration, a straight, inclinable 22 m long line of 40 mm I.D. was built. Very accurate measurements of temperatures and pressures obtained after in situ re-calibration and verified by independent sensors allowed us to validate our two-phase flow model. Although we focus on pressure losses and heat exchange results in relation to power injected, additional measurements such as quality, void fraction, and total mass flow rate enable a complete description of the two-phase flow. Experiments were carried out to cover the whole range of the future LHC He II two-phase flow heat exchanger pipe: slope between 0 and 2.8 %, temperature between 1.8 and 2 K, total mass flow rate up to 7.5 g/s. Results confirm the validity of choice for the LHC cooling scheme.
ABSTRACTIn the line of previous work done at CEA Grenoble, large size experiments were performed with the support of CERN for the validation of the LHC two phase superfluid helium cooling scheme. In order to be as close as possible to the real configuration, a straight, inclinable 22 m long line of 40 mm I.D. was built. Very accurate measurements of temperatures and pressures obtained after in situ re-calibration and verified by independent sensors allowed us to validate our two-phase flow model. Although we focus on pressure losses and heat exchange results in relation to power injected, additional measurements such as quality, void fraction, and total mass flow rate enable a complete description of the two-phase flow. Experiments were carried out to cover the whole range of the future LHC He II two-phase flow heat exchanger pipe: slope between 0 and 2.8 %, temperature between 1.8 and 2 K, total mass flow rate up to 7.5 g/s. Results confirm the validity of choice for the LHC cooling scheme.