This study aims to enhance the liquid water distribution within electrodes by innovatively designing a microporous layer (MPL) featuring orderly gradient perforations. Utilizing a multi‐component multi‐phase lattice Boltzmann model (LBM), which has been rigorously validated through contact angle measurements, Laplace pressure tests, grid independence checks, and comparisons with experimental data to ensure high predictive accuracy. The research systematically analyzes the governing liquid water transport in orderly gradient perforation MPLs. Leveraging this reliable modeling platform, the study conducts an exhaustive optimization analysis of gradient direction, gradation counts, and perforation geometry under constant porosity conditions. Findings reveal that negative gradient perforation designs significantly outperform positive gradient and conventional straight perforations, enhancing dry pore retention by at least 10.8%. Within the gradation counts, the ternary gradient structure further boosts channel retention by an additional minimum of 14.9% compared to quinary and continuous gradient structures. Moreover, cylindrical perforations demonstrate a substantial decrease surpassing spherical and square designs by at least 13.8% for liquid water saturation. Critically, the optimized model effectively inhibit the formation of saturation‐induced blockages in localized thickness regions. In conclusion, the investigation offers a robust basis for advancing MPL design strategies, targeting improved electrochemical processes and battery performance.