Numerical study has been performed to investigate the combined effects of lid movement and buoyancy on flow and heat transfer characteristics for the mixed convective flow inside a lid-driven arc-shape cavity. The work is motivated by its immense importance due to its wide range of applications. The numerical simulations, therefore, are performed for three different shape concave enclosures (rectangular, circular and triangular) in laminar flow regime and for different Reynolds numbers (10 ≤ Re ≤ 1000) and Grashof numbers (10 4 ≤ Gr ≤ 10 7 ) effects on the flow and heat transfer. Numerical results are presented in terms of streamlines, isotherms, velocity profiles and average Nusselt number along the bottom wall. The comparisons showed that the increase of Reynolds and Grashof numbers enhance the heat transfer for all forms of alveolus. Further, triangular alveolus highlights a higher heat transfer rate for higher Re numbers.