2024
DOI: 10.53570/jnt.1467235
|View full text |Cite
|
Sign up to set email alerts
|

Lattice of Subinjective Portfolios of Modules

Yilmaz Durğun

Abstract: Given a ring $R$, we study its right subinjective profile $\mathfrak{siP}(R)$ to be the collection of subinjectivity domains of its right $R$-modules. We deal with the lattice structure of the class $\mathfrak{siP}(R)$. We show that the poset $(\mathfrak{siP}(R),\subseteq)$ forms a complete lattice, and an indigent $R$-module exists if $\mathfrak{siP}(R)$ is a set. In particular, if $R$ is a generalized uniserial ring with $J^{2}(R)=0$, then the lattice $(\mathfrak{siP}(R),\subseteq,\wedge, \vee)$ is Boolean.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 20 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?