Abstract:Here we consider the question whether the lattice reformulation of a linear integer program can be used to produce effective cutting planes. In particular, we aim at deriving split cuts that cut off more of the integrality gap than Gomory mixed-integer (GMI) inequalities generated from LP-tableaus, while being less computationally demanding than generating the split closure. We consider integer programs (IPs) in the form max\{ \bfitc \bfitx | \bfitA \bfitx = \bfitb , \bfitx \in \BbbZ n + \} , where the reformu… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.