This study presents the phytosynthesis of silver-based nanoparticles using tomato flower waste extracts for the first time in the literature. The determination of total polyphenolic and flavonoid contents in the extracts showed high gallic acid equivalents (6436–8802 mg GAE/kg dm) and high quercetin equivalents (378–633 mg QE/kg dm), respectively, dependent on the extraction method. By the Ultra Performance Liquid Chromatography technique, 14 polyphenolic compounds were identified and quantified in the tomato flower waste extracts. The abundant phenolic compounds were caffeic acid (36,902–32,217 mg/kg) and chlorogenic acid (1640–1728 mg/kg), and the abundant flavonoid compounds were catechin (292–251 mg/kg) and luteolin (246–108 mg/kg). Transmission electron microscopy of the nanoparticles revealed a particle size range of 14–40 nm. Fourier Transform infrared spectroscopy and X-ray diffraction studies confirmed the phytosynthesis of the silver/silver oxide nanoparticles. These findings hold significant results for the antibacterial and antitumoral potential applications of the obtained nanoparticles, opening new areas for research and development and inspiring further exploration. The impact of this research on the field of metallic nanoparticle phytosynthesis is substantial, as it introduces a novel approach and could lead to significant advancements in the field.