Consider the quadratic family
$T_a(x) = a x (1 - x)$
for
$x \in [0, 1]$
and mixing Collet–Eckmann (CE) parameters
$a \in (2,4)$
. For bounded
$\varphi $
, set
$\tilde \varphi _{a} := \varphi - \int \varphi \, d\mu _a$
, with
$\mu _a$
the unique acim of
$T_a$
, and put
$(\sigma _a (\varphi ))^2 := \int \tilde \varphi _{a}^2 \, d\mu _a + 2 \sum _{i>0} \int \tilde \varphi _{a} (\tilde \varphi _{a} \circ T^i_{a}) \, d\mu _a$
. For any mixing Misiurewicz parameter
$a_{*}$
, we find a positive measure set
$\Omega _{*}$
of mixing CE parameters, containing
$a_{*}$
as a Lebesgue density point, such that for any Hölder
$\varphi $
with
$\sigma _{a_{*}}(\varphi )\ne 0$
, there exists
$\epsilon _\varphi>0$
such that, for normalized Lebesgue measure on
$\Omega _{*}\cap [a_{*}-\epsilon _\varphi , a_{*}+\epsilon _\varphi ]$
, the functions
$\xi _i(a)=\tilde \varphi _a(T_a^{i+1}(1/2))/\sigma _a (\varphi )$
satisfy an almost sure invariance principle (ASIP) for any error exponent
$\gamma>2/5$
. (In particular, the Birkhoff sums satisfy this ASIP.) Our argument goes along the lines of Schnellmann’s proof for piecewise expanding maps. We need to introduce a variant of Benedicks–Carleson parameter exclusion and to exploit fractional response and uniform exponential decay of correlations from Baladi et al [Whitney–Hölder continuity of the SRB measure for transversal families of smooth unimodal maps. Invent. Math.201 (2015), 773–844].