Since the discovery of breast cancer stem cells (CSCs), a significant effort has been made to identify and characterize these cells. It is a generally believe that CSCs play an important role in cancer initiation, therapy resistance, and progression of triple-negative breast cancer (TNBC), an aggressive breast cancer subtype with poor prognosis. Thus, therapies targeting these cells would be a valuable addition to standard treatments that primarily target more differentiated, rapidly dividing TNBC cells. Although several cell surface and intracellular proteins have been described as biomarkers for CSCs, none of these are specific to this population of cells. Recent research is moving toward cellular signaling pathways as targets and biomarkers for CSCs. The WNT pathway, the nuclear factor-kappa B (NF-κB) pathway, and the cholesterol biosynthesis pathway have recently been identified to play a key role in proliferation, survival, and differentiation of CSCs, including those of breast cancer. In this review, we assess recent findings related to these three pathways in breast CSC, with particular focus on TNBC CSCs, and discuss how targeting these pathways, in combination with current standard of care, might prove effective and improve the prognosis of TNBC patients.