“…[86] NS-3 Consensus processing time, implementation cost (hardware implementation area), power consumption [87] N/A Storage cost [88] Python & NS-3 Storage cost, block propagation time, number of calculations [89] N/A Storage cost [90] Cooja Number of transactions mined, latency, consensus time, energy consumption [91] C The increment of the Flash and RAM memory occupation and the average network latency [92] Hyperledger Storage efficiency, computational cost, communication cost [93] Ethereum Computational complexity, communication overhead [94] N/A CPU usage, memory usage, transactions performance [95] Matlab Consensus algorithm complexity, consensus efficiency [96] N/A Transaction throughput, memory usage, CPU utilization, bandwidth consumption [97] N/A Resource utilization, consensus delay [98] Ethereum Blockchain size, CPU and memory overhead, storage latency, PKI latency [99] Ethereum Storage cost, computational cost [100] N/A Computational cost, communication overhead [101] Hyperledger Transactions per second, consensus delay, communication times [102] Hyperledger Transactions per second, scalability, storage cost, block weight N/A Transactions per second [103] Hyperledger Scalability, storage cost, transactions delay, processing time [104] N/A DAG consensus: cumulative weights, number of tips, simulation time [106] Python Transaction confirmation overhead, validation overhead [107] Matlab Operating capability under the symmetric and asymmetric information environments [108] Python Authentication delay, application delay, network usage and energy consumption [109] Ethereum Gas cost, response time [110] Python Storage overhead, consensus latency [111] Hyperledger Transfer speed, migration time [112] Ethereum Disk usage, memory allocation, CPU usage, throughput, power consumption [113] NS3 Cryptography computational cost [114] N/A Power consumption, CPU usage, block transmission cost, message transmission overhead [114] Java Computational cost, storage, communication overhead, consensus delay...…”