“…For bilayer plates with isometry constraint, discretizations relying on Kirchhoff finite elements and on SIPG methods are proposed in [4,3] and [10], respectively. In our previous work [7], we consider (1.5) with a general immersible g ≠ I 2 , introduce a local discontinuous Galerkin (LDG) approach in which the Hessian D 2 y is replaced by a reconstructed Hessian H h (y h ), and explore the performance of LDG computationally. This paper provides a mathematical justification to several properties of the algorithms in [7], such as convergence, energy decrease and metric defect control.…”